Calculus 2 Exam#3, (sequence & series)

(Q1.)
$$\frac{1}{2} + \frac{1}{4} + \frac{1}{6} + \frac{1}{8} + \frac{1}{10} + \dots = ?$$

(A) $\frac{\pi}{8}$

(B) $\frac{\pi}{4}$

(C) $\frac{\ln 2}{2}$

(D) In2

(E) ∞

(Q2.) Which of the following series converges absolutely?

- (A) $\sum_{n=1}^{\infty} \frac{(-1)^n}{\sqrt[3]{n}}$
- (B) $\sum_{i=1}^{\infty} \frac{(-1)^{i}}{2^{n}}$
- (C) $\sum_{n=1}^{\infty} \frac{(-1)^n n^2}{n^3 + 1}$

- $(D) \sum_{n=0}^{\infty} (-1)^n$
- (E) $\sum_{n=0}^{\infty} \frac{(-1)^n 3^n}{2^n}$

(Q3.) If possible, evaluate $\sum_{i=1}^{\infty} \left(e^{\frac{1}{\sqrt{n}}} - e^{\frac{1}{\sqrt{n+1}}} \right)$

(A) e

(B) e-1

(C) $e + e^2$

(D) $e^2 - e$

(E) this series diverges

(Q4.) Which of the following infinite series diverges by the Test for Divergence?

- (A) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n \ln(n)}}$ (B) $\sum_{n=1}^{\infty} \frac{\tan^{-1}(n)}{n^2}$
- (C) $\sum_{n=1}^{\infty} \frac{n^2 + 2n}{n^3 + 4n + 9}$

- (D) $\sum_{n=0}^{\infty} \cos\left(\frac{1}{n}\right)$
- (E) $\sum_{n=0}^{\infty} \sin\left(\frac{1}{n}\right)$

(Q5.) Pikachu needs to find the **radius of convergence** for the power series $\sum_{n=0}^{\infty} 2^n (x-3)^n$. Help him to out!

(A) R = 3

(B) R = 2

(C) $R = \frac{1}{2}$

(D) R = 4

(E) $R = \frac{1}{4}$

(Q6.) Consider a sequence defined recursively by $a_1 = 5$, $a_n = 8 - a_{n-1}$ for $n \ge 2$. Which of the following statement about a_n is **true**?

- (A) a_n diverges
- (B) a_n converges to 3 (C) a_n converges to 5
- (D) a_n is increasing
- (E) a_n is decreasing

- (Q7.) Determine the **first four nonzero terms** of the power series for $\ln x$ at a=2
- (Q8.) Integrate the followings as a power series. State the radius of convergence
 - $(a) \int e^{-x^2} dx$
 - (b) $\int \frac{1}{1+8x^3} dx$
- (Q9.) Determine if $\sum_{n=1}^{\infty} \sin^3 \left(\frac{1}{n}\right)$ converges or not. Justify your answer.
- (Q10.) Bench press 225 pounds, 5 reps.
- (Q11.) Determine if $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n!}}$ converges or not. Justify your answer.
- (Q12.) Let $a_n = 2\left(\frac{-3}{4}\right)^n$
 - (a) Does a_n converge? If so, to what value?
 - (b) Does $\sum_{n=1}^{\infty} a_n$ converge? If so, to what value?
- (Q13.) Determine if $\sum_{n=1}^{\infty} \frac{n^2 + 2n + 4}{\sqrt{n^5 + 8n^2 2}}$ converges or not. Justify your answer.
- (Q14.) Give an example for each part below
 - (a) a_n so that $\sum_{n=1}^{\infty} a_n = 2$
 - (b) a_n and b_n so that both $\sum_{n=1}^{\infty} a_n$ and $\sum_{n=1}^{\infty} b_n$ diverge but $\sum_{n=1}^{\infty} (a_n b_n)$ converges
 - (c) a_n so that $a_n \neq 0$ for all n but $\sum_{n=1}^{\infty} a_n = 0$ *not on the actual exam*
 - (d) a_n and b_n so that $a_n \neq b_n$ but $\sum_{n=1}^{\infty} a_n = \sum_{n=1}^{\infty} b_n$ *not on the actual exam*